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Abstract
The Pohlmeyer–Lund–Regge system which was set down independently in the
contexts of Lagrangian field theories and the relativistic motion of a string
and which played a key role in the development of a geometric interpretation
of soliton theory is known to appear in a variety of important guises such
as the vectorial Lund–Regge equation, the O(4) nonlinear σ -model and
the SU(2) chiral model. Here, it is demonstrated that these avatars may
be discretized in such a manner that both integrability and equivalence are
preserved. The corresponding discretization procedure is geometric and
algebraic in nature and based on discrete Chebyshev nets and generalized
discrete Lelieuvre formulae. In connection with the derivation of associated
Bäcklund transformations, it is shown that a generalized discrete Lund–Regge
equation may be interpreted as a universal permutability theorem for integrable
equations which admit commuting matrix Darboux transformations acting
on su(2) linear representations. Three-dimensional coordinate systems and
lattices of ‘Lund–Regge’ type related to particular continuous and discrete
Zakharov–Manakov systems are obtained as a by-product of this analysis.

PACS numbers: 02.30.Ik, 02.30.Jr, 02.40.Hw, 05.45.Yv

1. Introduction

The discovery by Lund and Regge [1] in 1976 that the AKNS scattering problem [2] for
the integrable sine-Gordon equation and its associated ‘time evolution’ constitute nothing but
an su(2)-valued parameter-dependent generalization of the Gauß–Weingarten equations for
classical pseudospherical surfaces marked the beginning of an extensive geometric treatment
of modern soliton theory [3]. The system of nonlinear partial differential equations set down
by Lund and Regge in connection with the relativistic motion of a string in a uniform and static
external field was independently proven to be an integrable generalization of the sine-Gordon
equation by Pohlmeyer [4] who was concerned with On-invariant Lagrangian field theories.
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Lund [5] then showed that what is now known as the Pohlmeyer–Lund–Regge system may
also be interpreted as the Gauß–Mainardi–Codazzi equations for particular surfaces in S3.
This work was set in a broader context by Sym [6] who demonstrated that the connection
between soliton theory and classical differential geometry is natural and profound. However,
it turns out that differential geometers such as Bäcklund, Bianchi and Darboux may, in fact,
be regarded as the classical pioneers in this area (see [7] and references therein).

The important observation by Bobenko and Pinkall [8] in 1996 that the discrete analogues
of pseudospherical surfaces which were proposed independently by Sauer [9] and Wunderlich
[10] in 1950 and 1951 respectively are governed by Hirota’s integrable discretization of
the sine-Gordon equation [11] demonstrated that the above-mentioned geometric connection
extends to discrete integrable systems. In fact, it has become evident that the link
between integrable differential geometry and its discrete analogue is provided by fundamental
transformations known as Bäcklund transformations which were studied in great detail by
differential geometers around the turn of the 19th century [7]. In the past decade, the subject
of ‘discrete differential geometry’, which is concerned with the development of discrete models
of differential-geometric objects which preserve some of the fundamental properties of their
continuous counterparts such as integrability, has become a field of extensive research (see
[12] and references therein). The key role of Bäcklund transformations and their associated
permutability theorems [7] in both the continuous and discrete settings has thereby been
revealed.

Against the background of the developments in the past three decades, we here return to
the pioneering work of Lund and Regge and investigate in detail its significance in the modern
context of discrete differential geometry. As a by-product, novel geometric and algebraic
aspects of the original (continuous) Pohlmeyer–Lund–Regge system are also uncovered. The
aim of this investigation is to establish a complete correspondence between the discrete and
continuous settings and to demonstrate how a universal permutability theorem naturally arises
in this endeavour.

In view of the discrete setting, we begin with a review of some known algebraic and
geometric properties of the Lund–Regge equation which represents a vectorial avatar of the
Pohlmeyer–Lund–Regge system and its relation to the O(4) nonlinear σ -model and the SU(2)

chiral model. We recall the definition of Chebyshev nets on surfaces and present a novel
generalization of the classical Lelieuvre formulae for pseudospherical surfaces which provide
a natural link between the O(4) nonlinear σ -model and pairs of Lund–Regge surfaces. It
thereby emerges that the Chebyshev net parametrization of these pairs of Lund–Regge surfaces
corresponds to a parametrization of the associated ‘mid-surfaces’ in terms of asymptotic
coordinates. Section 2 is formulated in such a manner that, remarkably, it may be directly
‘translated’ into the discrete language. Thus, based on the standard concept of discrete
Chebyshev nets, discrete Lund–Regge surfaces are introduced and their connection with
discrete versions of the O(4) nonlinear σ -model and the SU(2) chiral model is discussed. In
particular, generalized discrete Lelieuvre formulae are presented and shown to encode pairs of
discrete Lund–Regge surfaces and corresponding mid-surfaces which, once again, constitute
standard discrete asymptotic lattices.

The discrete Lund–Regge equation is naturally embedded in a class of equations which
depends on two arbitrary functions of one variable. In section 4, it is shown that there exists a
Bäcklund transformation which acts within this class of ‘generalized Lund–Regge equations’
and which, in fact, preserves any particular choice of these two functions. We then exploit
this result to prove that it is consistent to demand that the generalized discrete Lund–Regge
equation regarded as a four-point relation holds on any face of a Z

3 lattice. In the natural
continuum limit, this implies that there exist coordinate systems in R

3 for which the coordinate
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surfaces are of generalized Lund–Regge type. In particular, (standard) Lund–Regge surfaces
may be used to construct special three-dimensional coordinate systems.

2. Chebyshev nets and the integrable Pohlmeyer–Lund–Regge system

In this section, we give a brief summary of various connections between the Pohlmeyer–Lund–
Regge system, the O(4) nonlinear σ -model and the SU(2) chiral model. In addition, we
extend the link between pseudospherical surfaces and their spherical representation provided
by the classical Lelieuvre formulae to the case of pairs of Lund–Regge surfaces and the O(4)

nonlinear σ -model.

2.1. Chebyshev nets

It is well known [13] that any surface � in a three-dimensional Euclidean space with position
vector r may be locally parametrized in such a way that the first fundamental form is given by

I = dr2 = dx2 + 2 cos 2θ dx dy + dy2, (2.1)

where 2θ constitutes the angle between the coordinate lines x = const and y = const. The
latter two families form a net on � which commonly bears the name of Chebyshev who
was the first to undertake a detailed investigation of such nets in connection with ‘the cutting
of clothes’ [14]. A Chebyschev net of curves on a surface may be characterized by the
requirement that the lengths of opposite sides of any (curved) quadrilateral formed by two
pairs of curves be the same. It is evident that the above fundamental form is obtained by
demanding that the coordinate lines be parametrized in terms of arc length. In general, the
conditions for a coordinate system to define a Chebyshev net are given by

r2
x = f (x), r2

y = g(y). (2.2)

Suitable reparametrizations of the coordinate lines then lead to the arc length constraints
r2

x = r2
y = 1. Differentiation of (2.2) yields

rx · rxy = 0, ry · rxy = 0 (2.3)

so that a surface � is parametrized in terms of ‘Chebyshev coordinates’ if and only if the
position vector r(x, y) obeys a differential equation of the form

rxy = σrx × ry, σ = σ(x, y). (2.4)

This is equivalent to stating that

rxy ‖ N̂ , (2.5)

where N̂ = rx × ry/|rx × ry | denotes the unit normal to �.

2.2. The Pohlmeyer–Lund–Regge system

Any prescribed scalar function σ in the differential equation (2.4) corresponds to a particular
class of surfaces bearing the Chebyshev nets. The simplest choice σ = 1 leads to

rxy = rx × ry (2.6)

which has been demonstrated by Lund and Regge [1] to represent the relativistic motion
of a string in a uniform and static external field. Based on the canonical metric (2.1), it
may be shown that the second fundamental form of the surface � : r = r(x, y) admits the
parametrization

II = −dr · dN̂ = 2 cot θϕx dx2 + 2 sin 2θ dx dy + 2 cot θϕy dy2. (2.7)
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The associated Gauß–Mainardi–Codazzi equations [13], which completely encode the Lund–
Regge equation (2.6), then read

θxy +
cos θ

sin3 θ
ϕxϕy = sin θ cos θ

(cot2 θϕx)y = (cot2 θϕy)x.

(2.8)

The above system is invariant under ϕ → −ϕ. Since the second fundamental form (2.7)
is not preserved by this invariance, it is evident that any Lund–Regge surface � naturally
admits another Lund–Regge surface �̃ which is uniquely defined up to rigid motions. The
two surfaces coincide if ϕ = 0, in which case (2.8) reduces to the sine-Gordon equation

2θxy = sin 2θ (2.9)

and the surface � = �̃ constitutes a pseudospherical surface [15] since the Gaußian curvature
is given by

K = det II

det I
= −1. (2.10)

The classical Lelieuvre formulae [15]

rx = N̂ × N̂ x, ry = N̂ y × N̂ , (2.11)

which provide the link between a pseudospherical surface and its spherical representation,
then imply, on elimination of r, that N̂ xy ‖ N̂ and hence N̂ is governed by the nonlinear
σ -model

N̂ xy + (N̂ x · N̂ y)N̂ = 0, N̂ 2 = 1. (2.12)

In fact, Pohlmeyer [4] has shown that the unconstrained nonlinear system (2.8) is equivalent
to the O(4) nonlinear σ -model

Nxy + (Nx · Ny)N = 0, N ∈ S3 (2.13)

and admits a linear representation in the sense of soliton theory [3]. Moreover, Lund [5]
has observed that the integrable Pohlmeyer–Lund–Regge system is nothing but the Gauß–
Mainardi–Codazzi equations associated with the class of surfaces � ⊂ S3 defined by (2.13).

2.3. Chiral and nonlinear σ -models

At the surface level, the connection between the Pohlmeyer–Lund–Regge system and the O(4)

nonlinear σ -model is established in the following manner [16]. We first identify the space of
quaternions H with a four-dimensional Euclidean space R 4 via

R 4 � (a, b, c, d) ↔ (a11 + bi + cj + dk) ∈ H , (2.14)

where the matrices 11, i , j, k are defined by

11 =
(

1 0
0 1

)
, i =

(
0 −i
−i 0

)
, j =

(
0 −1
1 0

)
, k =

(−i 0
0 i

)
. (2.15)

It is noted in passing that H admits the two characterizations

H =
{
H ∈ C 2,2 : MH̄ = HM,M =

(
0 −1
1 0

)}
H = {H ∈ C 2,2 : H †H ∼ 11,H † + H ∼ 11}

(2.16)

so that

H ⊂ G = {� ∈ C 2,2 : �†� ∼ 11}. (2.17)
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In particular, we adopt the isomorphism of the three-dimensional subspaces R 4 ⊃
R 3 ∼= su(2) ⊂ H represented by

R 3 � (b, c, d) ↔ (bi + cj + dk) ∈ su(2). (2.18)

Thus, on the one hand, any Lie group element N ∈ SU(2) ⊂ H may be decomposed into

N = N · e, N ∈ S3, e = (11, i , j, k), (2.19)

while, on the other hand, any Lie algebra element r ∈ su(2) admits the decomposition

r = r · e, r ∈ R 3, e = (i , j, k). (2.20)

Multiplication of any two quaternions

A = A · e = A011 + A · e, B = B · e = B011 + B · e (2.21)

then yields

AB† = (A · B)11 + (−A × B + B0A − A0B) · e (2.22)

so that, in particular,

XY = −(X · Y )11 + (X × Y ) · e (2.23)

for any su(2) matrices X = X ·e and Y = Y ·e. The latter two relations are based on the
fact that Hermitian conjugation of quaternions is represented by

A = A011 + A · e, A† = A011 − A ·e. (2.24)

The decompositions (2.20) and (2.23) now imply that the su(2) version of the Lund–Regge
equation (2.6) is given by

rxy = 1
2 [rx, ry]. (2.25)

The latter guarantees that there exists an N ∈ SU(2) obeying the compatible linear system

Nx = rxN, Ny = −ryN. (2.26)

Thus, by virtue of N †N = 11, we obtain the representation

rx = NxN
†, ry = −NyN

† (2.27)

of the tangent vectors rx and ry to the Lund–Regge surface �. Cross-differentiation then
leads to the matrix equation(

NN †
x

)
y

+
(
NN †

y

)
x

= 0 (2.28)

or, equivalently,

(N †Nx)y + (N †Ny)x = 0. (2.29)

The latter constitutes the standard form of the SU(2) chiral model [16] and is equivalent to the
O(4) nonlinear σ -model (2.13) with the identification (2.19). Furthermore, the variant (2.28)
demonstrates that Ñ = N † is another solution of the chiral model and, accordingly, a second
Lund–Regge surface �̃ with position vector r̃ is obtained by integration of the pair

r̃x = N †
xN, r̃y = −N †

yN. (2.30)

In the following section, it is verified that the transition from � to �̃ via the chiral
model corresponds to the invariance ϕ → −ϕ of the Pohlmeyer–Lund–Regge system
(2.8). Moreover, it is shown that the Lund–Regge pairs (r, r̃) are naturally encoded in a
generalization of the classical Lelieuvre formulae.
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2.4. A generalization of the Lelieuvre formulae

In vector notation, the connection between the Lund–Regge equation and the O(4) nonlinear
σ -model encoded in (2.27) may be expressed as

rx = N × N x + N0N x − N0xN

ry = N y × N + N0yN − N0N y

(2.31)

by virtue of the expansion (2.22). Similarly, the vector analogue of the pair (2.30) reads

r̃x = N × N x − N0N x + N0xN

r̃y = N y × N − N0yN + N0N y

(2.32)

so that

rxx = N × N xx + N0N xx − N0xxN

rxy = N y × N x + N0yN x − N0xN y

ryy = N yy × N + N0yyN − N0N yy

(2.33)

and

r̃xx = N × N xx − N0N xx + N0xxN

r̃xy = N y × N x − N0yN x + N0xN y

r̃yy = N yy × N − N0yyN + N0N yy

(2.34)

by virtue of the nonlinear σ -model (2.13). It is observed in passing that N constitutes a
normal to the ‘mid-surface’ �̄ defined by

r̄ = r + r̃

2
(2.35)

since the relations (2.31), (2.32) enshrine the Lelieuvre formulae

r̄x = N × N x, r̄y = N y × N . (2.36)

Hence, x and y represent asymptotic coordinates [15] on �̄.
The above relations show that, in order to determine the fundamental forms associated

with the surfaces � and �̃, it is now required to evaluate inner products of vectors of the form

V = A × B + ε(A0B − B0A), W = C × D + ε(C0D − D0C), (2.37)

where ε = ±1. Thus, a short calculation reveals that

V ·W = (A · C)(B · D) − (A · D)(B · C) + ε|A, B, C, D|, (2.38)

where A = (A0,A), . . . , D = (D0,D), so that, on the one hand,

r2
x = r̃2

x = N2
x, rx · ry = r̃x · r̃y = −Nx · Ny, r2

y = r̃2
y = N2

y. (2.39)

Consequently, the surfaces � and �̃ are isometric. On the other hand, the relations

rxx · rxy = −r̃xx · r̃xy, r2
xy = r̃2

xy, ryy · rxy = −r̃yy · r̃xy (2.40)

demonstrate that the off-diagonal terms of the second fundamental forms of � and �̃ coincide
while the diagonal terms exhibit opposite signs. It is evident that this corresponds to the
invariance ϕ → −ϕ of the Pohlmeyer–Lund–Regge system (2.8) encoding the transition from
� to �̃.

If the right-hand sides of the classical Lelieuvre formulae (2.11) are interpreted in the
standard manner as so(3) matrices then Lelieuvre-type formulae may be formulated for vectors
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of arbitrary dimension. In particular, if N is a solution of the O(4) nonlinear σ -model (2.13)
then the pair

Rx = 2
(
NxNT − NNT

x

)
, Ry = 2

(
NNT

y − NyNT
)

(2.41)

is compatible. Since the right-hand sides of these relations are anti-symmetric, we may assume
that R ∈ so(4). Accordingly, the generalized Lelieuvre formulae (2.41) are readily shown to
imply that R is a solution of the so(4) version of the Lund–Regge equation in the matrix form
(2.25), that is

Rxy = 1
2 [Rx,Ry]. (2.42)

If we now employ the Lie algebra isomorphism so(4) ∼= so(3) ⊕ so(3) so that so(4) may be
decomposed into the direct sum of two so(3) Lie algebras g and g̃ with [g, g̃] = 0 then the two
components r ∈ g and r̃ ∈ g̃ of R obey the ‘so(3)-valued’ Lund–Regge equations

rxy = 1
2 [rx, ry], r̃xy = 1

2 [r̃x , r̃y]. (2.43)

Indeed, a canonical basis of so(4) is given by the anti-symmetric matrices

L1 =




0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0


, L2 =




0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


, L3 =




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0




L̃1 =




0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


, L̃2 =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


, L̃3 =




0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0




(2.44)

or, equivalently,

(Li)αβ = ε0iβα + δiαδ0β − δiβδ0α, (L̃i)αβ = ε0iβα − δiαδ0β + δiβδ0α, (2.45)

where εαβµν and δαβ denote the usual Levi-Civita and Kronecker symbols, respectively. It is
readily verified that

[Li, Lk] = 2εiklLl, [Li, L̃k] = 0, [L̃i, L̃k] = 2εiklL̃l (2.46)

and hence the matrices Li and L̃i are generators of the so(3) subalgebras g and g̃.
Decomposition of R into

R = r ·L + r̃ · L̃ (2.47)

with L = (L1, L2, L3) and L̃ = (L̃1, L̃2, L̃3) then reveals that the generalized Lelieuvre
formulae (2.41) are nothing but a compact reformulation of the relations (2.31), (2.32). Thus,
the generalized Lelieuvre formulae relate the O(4) nonlinear σ -model to pairs of Lund–Regge
surfaces in the same manner as the classical Lelieuvre formulae encapsulate the connection
between the O(3) nonlinear σ -model and pseudospherical surfaces.

3. Discrete Chebyschev nets and integrable discrete Lund–Regge surfaces

In this section, it is demonstrated that the analysis undertaken in the preceding may be
carried over to the discrete setting in such a manner that integrability is preserved. We begin
with a discussion of discrete Chebyshev nets which have been used independently by Sauer
[9] and Wunderlich [10] to define discrete analogues of pseudospherical surfaces. In fact,
this connection with discrete surfaces of constant negative Gaußian curvature has provided the
first indication of the importance of discrete Chebyschev nets in integrable discrete differential
geometry (see [12] and references therein).
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r12

r2

r

h

A

r1

Figure 1. The geometry of a Chebyschev quadrilateral.

3.1. Discrete Chebyshev nets

In the following, we refer to quadrilateral lattices of the type

r : Z2 → R 3, (n1, n2) 
→ r(n1, n2) (3.1)

as discrete surfaces. A Chebyshev lattice or discrete Chebyshev net is defined by the property
that opposite edges of any (non-planar) quadrilateral are of equal length. Thus, a discrete
Chebyshev net is composed of ‘skew’ parallelograms. If the vertices of any quadrilateral are
denoted by

r = r(n1, n2), r1 = r(n1 + 1, n2)

r12 = r(n1 + 1, n2 + 1), r2 = r(n1, n2 + 1)
(3.2)

(cf figure 1) then discrete Chebyshev nets are encoded in the relations

�2(�1r)2 = 0, �1(�2r)2 = 0, (3.3)

where the difference operators �i are defined by �if = fi − f . Since the above relations
may be formulated as

(�12r) · (r12 − r) = 0, (�12r) · (r2 − r1) = 0 (3.4)

with �12 = �1�2 = �2�1, discrete Chebyshev nets are governed by the difference equation

�12r = σ

2
(r12 − r) × (r2 − r1), σ = σ(n1, n2). (3.5)

It is readily verified that, in the formal continuum limit r(x, y) = r(ε1n1, ε2n2), εi → 0, the
difference equation (3.5) reduces to the differential equation (2.4).

In geometric terms, if we define the ‘discrete normal’ to a skew parallelogram by

N̂ = (r12 − r) × (r2 − r1)

|(r12 − r) × (r2 − r1)| (3.6)

then relation (3.5) is equivalent to

�12r ‖ N̂ (3.7)

and, as illustrated in figure 1, expresses the fact that the diagonals (r12 − r and r2 − r1) of
a skew parallelogram are orthogonal to the line segment

(
1
2�12r

)
connecting their centres.

Moreover, the function σ may be regarded as a measure of the ‘curvature’ of the parallelograms
since

σ = (�12r) · N̂
1
2 |(r12 − r) × (r2 − r1)|

= 2h

A
, (3.8)
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where h and A denote the ‘height’ and ‘projected area’ of a skew parallelogram, respectively,
as displayed in figure 1. It is observed that the representations (3.8) of the function σ are the
canonical analogues of the expressions

σ = rxy · N̂

|rx × ry | = f√
det I

(3.9)

valid in the differential-geometric setting. Here, f is the off-diagonal coefficient of the second
fundamental form.

3.2. Discrete Lund–Regge surfaces and nonlinear σ -models

It is evident that any function σ which tends to unity in the above-mentioned formal continuum
limit is associated with a discretization of the Lund–Regge equation (2.6). For instance, the
simplest choice σ = 1 corresponds to

�12r = (r12 − r) × (r2 − r1)

2
. (3.10)

It is natural to enquire as to whether there exists any connection with the standard integrable
discretization of the O(n) nonlinear σ -model [28]

N12 + N = N · (N1 + N2)

1 + N1 · N2
(N1 + N2), N2 = 1 (3.11)

in the case n = 4. In this connection, it is enlightening to consider the particular case of the
O(3) nonlinear σ -model

N̂ 12 + N̂ = N̂ · (N̂ 1 + N̂ 2)

1 + N̂ 1 · N̂ 2
(N̂ 1 + N̂ 2), N̂ 2 = 1 (3.12)

which is known to constitute the ‘spherical representation’ of discrete pseudospherical surfaces
[8]. In fact, given a solution of the discrete nonlinear σ -model (3.12), the discrete Lelieuvre
formulae

�1r = N̂ × N̂ 1, �2r = N̂ 2 × N̂ (3.13)

are compatible and r constitutes the position vector of a discrete surface of constant negative
Gaußian curvature. Multiplication of (3.12) by N̂ 1 and N̂ 2 respectively shows that

�2(N̂ 1 · N̂ ) = 0, �1(N̂ 2 · N̂ ) = 0 (3.14)

and hence discrete pseudospherical surfaces constitute discrete Chebyshev nets since

(�1r)2 = 1 − (N̂ 1 · N̂ )2, (�2r)2 = 1 − (N̂ 2 · N̂ )2. (3.15)

Specifically, it may be directly verified that the position vector r obeys the difference equation

�12r = (r12 − r) × (r2 − r1)

α(n1) + β(n2)
(3.16)

with α = N̂ 1 · N̂ and β = N̂ 2 · N̂ or, equivalently,

α =
√

1 − (�1r)2, β =
√

1 − (�2r)2. (3.17)

Here, in view of the formal continuum limit, we have made the admissible assumption that
N̂ i · N̂ > 0 so that α + β → 2 as εi → 0. Accordingly, (3.16), (3.17) constitute a
discretization of the Lund–Regge equation (2.6) which, as in the classical case, incorporates
(discrete) pseudospherical surfaces.
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3.3. Generalized discrete Lelieuvre formulae and a discrete chiral model

In the following section, it is established that the lattice equation (3.16) is integrable for
arbitrary functions α and β depending on their respective arguments. Thus, in particular,
the two discretizations (3.10) and (3.16), (3.17) admit Lax pairs and associated Bäcklund
transformations. We now demonstrate that the latter discretization is but another avatar of
the discrete O(4) nonlinear σ -model. To this end, it is observed that the generalized discrete
Lelieuvre formulae

�1R = 2
(
N1NT − NNT

1

)
, �2R = 2

(
NNT

2 − N2NT
)

(3.18)

are compatible modulo the discrete O(4) nonlinear σ -model (3.11) so that, once again, it may
be assumed that R ∈ so(4). A short calculation then reveals that

�12R = [R12 − R,R2 − R1]

2N · (N1 + N2)
(3.19)

so that decomposition of R into its so(3) ⊕ so(3) components r and r̃ according to (2.47)
leads to two difference equations of the form (3.16) since N1 · N and N2 · N are functions of
n1 and n2, respectively. Moreover, the generalized discrete Lelieuvre formulae expressed in
terms of r and r̃, that is

�1r = N × N 1 + N0N 1 − N01N

�2r = N 2 × N + N02N − N0N 2

�1r̃ = N × N 1 − N0N 1 + N01N

�2r̃ = N 2 × N − N02N + N0N 2,

(3.20)

imply that

(�1r)2 = (�1r̃)2 = 1 − (N1 · N)2, (�2r)2 = (�2r̃)2 = 1 − (N2 · N)2 (3.21)

by virtue of the identity (2.38). We therefore conclude that any solution N of the discrete
O(4) nonlinear σ -model (3.11) corresponds to a pair of solutions r and r̃ of the discrete
Lund–Regge equation

�12r = (r12 − r) × (r2 − r1)

α(n1) + β(n2)

α =
√

1 − (�1r)2, β =
√

1 − (�2r)2.

(3.22)

In order to prove equivalence, it remains to establish the ‘converse’ of the above statement.
Thus, the su(2) analogue of the discrete Lund–Regge equation (3.22) is given by

(α + β)�12r = (r12 − r2)(r2 − r) − (r12 − r1)(r1 − r) (3.23)

with r = r ·e. Indeed, the trace-free part of (3.23) is equivalent to the discrete Lund–Regge
equation while its trace terms yield

(�12r) · (r2 − r1) = 0, (3.24)

which is a consequence of (3.22)1. On introduction of the matrices

U = α11 + �1r, V = β11 − �2r, (3.25)

the above matrix equation may be written as

U2V = V1U (3.26)

which, in turn, guarantees the compatibility of the linear pair

N1 = UN, N2 = V N. (3.27)
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Here, we may assume that N ∈ SU(2) since

U †U = α211 − (�1r)
2 = [α2 + (�1r)2]11 = 11 (3.28)

and, similarly, V †V = 11 by virtue of the definitions (3.22)2,3. Accordingly, the pair (3.27)
may be formulated as

�1r = N1N
† − α11, �2r = −N2N

† + β11, (3.29)

which, on use of the decomposition N = N ·e = N011+N · e and the identity (2.22), is seen to
be equivalent to the generalized discrete Lelieuvre formulae in the form (3.20) together with

α = N1 · N, β = N2 · N. (3.30)

Since the generalized discrete Lelieuvre formulae imply that N must be a solution of the
discrete O(4) nonlinear σ -model, the proof is complete.

In conclusion, it is noted that elimination of r from the pair (3.29) yields

N12
(
N

†
1 + N

†
2

) = (N1 + N2)N
†. (3.31)

On the one hand, this matrix equation may be reformulated as(
N

†
1 + N

†
2

)
N12 = N †(N1 + N2), (3.32)

which, in the formal continuum limit, becomes the SU(2) chiral model (2.29). Thus,
(3.32) constitutes an integrable discretization of the SU(2) chiral model or, equivalently,
the quaternionic version of the discrete O(4) nonlinear σ -model (3.11). On the other hand,
the form

(N1 + N2)N
†
12 = N

(
N

†
1 + N

†
2

)
(3.33)

reveals that, as in the continuous case, Ñ = N † represents another solution of the discrete
SU(2) chiral model corresponding to another solution r̃ of the discrete su(2) Lund–Regge
equation (3.23) defined by the analogue of the pair (3.29). Moreover, the mid-surface �̄ of
the associated two discrete surfaces defined by

r̄ = r + r̃

2
(3.34)

gives rise to the discrete Lelieuvre formulae

�1r̄ = N × N 1, �2r̄ = N 2 × N (3.35)

by virtue of the generalized discrete Lelieuvre formulae (3.20). This implies that any vertex r̄
of �̄ and its four neighbours are coplanar with N being an associated normal as illustrated in
figure 2. Thus, by definition, discrete Lund–Regge mid-surfaces constitute discrete asymptotic
nets. The latter have been used extensively in the construction of integrable discretizations
of surfaces which may be naturally parametrized in terms of asymptotic coordinates (see [12]
and references therein).

4. A Lax pair and a Bäcklund transformation for the generalized discrete
Lund–Regge equation

In this section, it is demonstrated that the generalized discrete Lund–Regge equation

�12r = (r12 − r) × (r2 − r1)

α(n1) + β(n2)
(4.1)

admits a Lax pair and an associated Bäcklund transformation. Moreover, it is shown that the
constraints α = β = 1 and (3.17) associated with the two discretizations (3.10) and (3.22)
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r̄
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Σ̃

Figure 2. A planar star of a discrete Lund–Regge mid-surface.

respectively of the Lund–Regge equation are preserved by this Bäcklund transformation. It
is noted that, in the formal continuum limit, the su(2) version of the generalized discrete
Lund–Regge equation becomes

rxy = [rx, ry]

α(x) + β(y)
. (4.2)

Hyperbolic and elliptic analogues of this matrix equation corresponding to various other Lie
algebras/groups may be found in the literature, in particular, in the context of general relativity
[17, 18].

4.1. A Lax pair

In order to reveal the fundamental nature of the generalized discrete Lund–Regge equation,
we begin with the general form of a pair of linear equations

�1 = A(λ11 + U)�, �2 = B(λ11 + V )� (4.3)

for a G-valued function � which is such that �1�
−1 and �2�

−1 are linear in a constant real
parameter λ. It is recalled that G = {� ∈ C 2,2 : �†� ∼ 11}. The above pair is compatible if
and only if the (λ-independent) matrix-valued functions A,B and U,V satisfy the polynomial
equation

A2(λ11 + U2)B(λ11 + V ) = B1(λ11 + V1)A(λ11 + U) (4.4)

which is a consequence of the compatibility condition �12 = �21. The terms quadratic in
λ yield A2B = B1A so that the matrices A and B may be absorbed into � by means of an
appropriate gauge transformation � → G� which acts within G. Indeed, since, for instance,
A(λ11 + U) ∈ G, the relation (λ11 + U †)A†A(λ11 + U) ∼ 11 implies that A ∈ G. Thus, without
loss of generality, we may assume that A = B = 11. The remaining powers of λ now give rise
to

U2 − U = V1 − V, U2V = V1U. (4.5)

In order to guarantee that � ∈ G, it is required that

(λ11 + U †)(λ11 + U) ∼ 11, (λ11 + V †)(λ11 + V ) ∼ 11 (4.6)
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and hence U,V ∈ H by virtue of (2.16) so that

U = α11 + u, V = −β11 + v, u, v ∈ su(2), α, β ∈ R. (4.7)

Moreover, the compatibility condition (4.4) implies that

det(λ11 + U2) det(λ11 + V ) = det(λ11 + V1) det(λ11 + U), (4.8)

leading to

[(λ + α2)
2 + det u2][(λ − β)2 + det v] = [(λ − β1)

2 + det v1][(λ + α)2 + det u]. (4.9)

The latter represents an algebraic system of equations for the scalars α, β, α2, β1 and
det u, det v, det u2, det v1 which is readily seen to admit two solutions corresponding to

α2 = α, β1 = β (4.10)

or α = −β, α2 = −β1. However, the analogue of the analysis presented below shows that
the latter solution implies the former and hence we may assume that α = α(n1), β = β(n2).
Now, insertion of the parametrization (4.7) into the compatibility conditions (4.5) leads to

α(v1 − v) + β(u2 − u) = u2v − v1u, u2 − u = v1 − v. (4.11)

Thus, there exists an su(2)-valued potential r which parametrizes u and v according to

u = r1 − r, v = r2 − r (4.12)

and the remaining equation (4.11)1 becomes

(α + β)�12r = (r12 − r2)(r2 − r) − (r12 − r1)(r1 − r) (4.13)

which is indeed equivalent to the generalized discrete Lund–Regge equation (4.1) if the usual
decomposition r = r ·e is employed. The following theorem therefore obtains

Theorem 1. The parameter-dependent linear pair

�1 = (λ11 + U)�, �2 = (λ11 + V )�, (4.14)

where � ∈ G, is compatible if and only if the matrices U and V may be parametrized in terms
of solutions of the generalized discrete Lund–Regge equation

�12r = (r12 − r) × (r2 − r1)

α(n1) + β(n2)
(4.15)

according to

U = α1l + (r1 − r) · e, V = −β1l + (r2 − r) · e. (4.16)

In the terminology of soliton theory [3], the pair (4.14) constitutes a linear representation
or a Lax pair for the generalized discrete Lund–Regge equation (4.15). Since � ∈ G, it
is gauge-equivalent to an ‘SU(2)-valued’ Lax pair, the coefficients of which are, however,
no longer linear in λ. It is shown below that the above Lax pair may be employed in the
construction of a Bäcklund transformation for the generalized discrete Lund–Regge equation.

It is noted in passing that the standard integrability-preserving discretization of surfaces
generated by a ‘smoke ring’ which evolves according to an integrable Heisenberg spin
equation (cf section 5.4) [19] is encapsulated in the generalized discrete Lund–Regge
equation via a particular choice of the functions a(n1), b(n2) and the first integrals (�1r)2 =
f (n1), (�2r)2 = g(n2).
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4.2. A Bäcklund transformation

We now seek a linear transformation of the ‘eigenfunction’ � which leaves form-invariant the
linear representation (4.14) of the generalized discrete Lund–Regge equation. Thus, we make
the ansatz

�′ = (λ11 + W)�, (4.17)

where W is a yet unspecified matrix-valued function. It is noted that the structure of the above
transformation resembles that of the Lax pair. The implications of this observation will be
discussed later. Insertion of �′ into the primed version of (4.14), that is

�′
1 = (λ11 + U ′)�′, �′

2 = (λ11 + V ′)�′, (4.18)

produces the system

W1 − W = U ′ − U, W1U = U ′W

W2 − W = V ′ − V, W2V = V ′W
(4.19)

which, in turn, guarantees the compatibility of the pair (4.18). Accordingly, the matrices U ′

and V ′ obey the primed version of the system (4.5) and hence provide another solution of the
generalized discrete Lund–Regge equation as long as �′ ∈ G. Alternatively, one may directly
verify that U ′ and V ′ as defined by (4.19)1,3 indeed satisfy the primed version of (4.5). Now,
elimination of U ′ and V ′ from (4.19) leads to the two nonlinear equations

W1(U − W) = (U − W)W, W2(V − W) = (V − W)W (4.20)

for the matrix W . Under the assumption that U −W and V −W are invertible, it may be shown
that the compatibility condition W12 = W21 is satisfied and hence W is uniquely determined
by its value W0 at some lattice point, say, n0 = (0, 0). Moreover, if W0 ∈ H then W ∈ H and
�′ ∈ G as required.

It turns out that the system (4.20) may, in fact, be linearized. In order to make good this
assertion, we first observe that

W = −�−1, � = diag(λ[1], λ[2]), (4.21)

where λ[i] are constant parameters and  obeys the linear pair

1 = � + U, 2 = � + V , (4.22)

constitutes a solution of the compatible system (4.20). Moreover,  is uniquely determined
by its value 0 at n0. If we choose W0 in such a way that there exist two linearly independent
eigenvectors of W0 then −λ[i] represent the eigenvalues of W0 and the columns of 0 are
the corresponding eigenvectors. Hence, W indeed admits the parametrization (4.21). In
conclusion, it is noted that the columns of  are merely vector-valued solutions of the Lax
pair (4.14) associated with the (complex) parameters λ[i]. This confirms the compatibility of
both (4.22) and (4.20).

If W0 ∼ 11 then W = W0 and (4.17) essentially reduces to the identity transformation.
If W0 ∈ H and W0 ∼ 11 then W0 has two distinct complex conjugate eigenvalues. Thus, in
the context of the generalized discrete Lund–Regge equation corresponding to W ∈ H , (4.21)
represents the general solution of the system (4.20). Furthermore, if ψ is a vector-valued
solution of the Lax pair (4.14) associated with the parameter λ[1] = µ then, by virtue of the
characterization (2.16)1,Mψ̄ constitutes a second solution with λ[2] = µ̄. We may therefore
make the choice

 = (ψ,Mψ̄) ∈ H , � = diag(µ, µ̄) ∈ H (4.23)
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in order to formulate a Bäcklund transformation [7] for the generalized discrete Lund–Regge
equation.

Theorem 2. The linear representation (4.14) of the generalized discrete Lund–Regge equation
is form-invariant under the transformation

� → �′ = (λ11 − �−1)�

r → r ′ = r − �−1 + �

α → α′ = α

β → β ′ = β

(4.24)

with r = r · e and

 = (ψ,Mψ̄), � =
(

µ 0
0 µ̄

)
, M =

(
0 −1
1 0

)
, (4.25)

where ψ is a vector-valued solution of (4.14) corresponding to an arbitrary complex parameter
µ. The solution r′ of the generalized discrete Lund–Regge equation (4.15) obtained via the
decomposition r ′ = r′ ·e admits the first integrals

(�1r
′)2 = (�1r)2, (�2r

′)2 = (�2r)2. (4.26)

The constraints α = β = 1 and (3.17) associated with the two discretizations (3.10) and
(3.16), (3.17) respectively of the Lund–Regge equation are preserved.

Proof. The difference equations (4.20) imply that both trW and det W are constant.
Accordingly, system (4.19) gives rise to

trU ′ = trU, trV ′ = trV, det U ′ = det U, det V ′ = det V. (4.27)

Since, by construction, U ′ and V ′ may be decomposed into

U ′ = α′11 + �1r, V ′ = β ′11 + �2r, r ′ = r′ ·e ∈ su(2), (4.28)

we conclude that α′ = α, β ′ = β and that the first integrals (4.26) hold. Any prescribed
relations of the type α = α[(�1r)2] and β = β[(�2r)2] are therefore preserved. Moreover,
the transformation laws (4.19)1,3 may be brought into the form

�1(r
′ − r − W) = 0, �2(r

′ − r − W) = 0, (4.29)

which shows that r ′ is indeed given by (4.24)2, wherein the trace-free ‘constant of summation’
has been neglected without loss of generality. �

4.3. Three-dimensional (generalized) Lund–Regge lattices

Iterative application of the above Bäcklund transformation leads to a sequence of generalized
discrete Lund–Regge surfaces with associated position vectors

r = r(n1, n2; n3), (4.30)

where n3 labels the number of iterations. At each step, one may arbitrarily choose the Bäcklund
parameter µ so that the collection of Bäcklund parameters may be encapsulated in the notation

µ = µ(n3). (4.31)

Thus, the Bäcklund transformation generates three-dimensional lattices

r : Z3 → R 3 (4.32)

which are such that any two-dimensional sublattice r(n3 = const) constitutes a generalized
discrete Lund–Regge surface. Since the Bäcklund transformation preserves the constraints
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which are associated with discrete Lund–Regge surfaces, lattices which consist of an infinite
number of discrete Lund–Regge surfaces may also be constructed. In the following, we study
in more detail the properties of these (generalized) ‘Lund–Regge lattices’.

We begin with the requirement that a G-valued function �(n1, n2, n3) satisfies a linear
triad of the form

�1 = (λ11 + U)�, �2 = (λ11 + V )�, �3 = (λ11 + W)�, (4.33)

where λ is a constant real parameter and the subscript 3 designates a unit increment of the
discrete variable n3. The compatibility conditions �ik = �ki then produce the system

U2 − U = V1 − V, U2V = V1U

V3 − V = W2 − W, V3W = W2V

W1 − W = U3 − U, W1U = U3W

(4.34)

which may be solved for U2, U3, V3, V1 and W1,W2. From an algebraic point of view, the
above system is identical to the systems (4.5) and (4.19) with the prime being identified
with the subscript 3. Consequently, it has already been demonstrated that the compatibility
condition W12 = W21 holds. For reasons of symmetry, the remaining compatibility conditions
U23 = U32 and V13 = V31 are also satisfied. Thus, it emerges that the pairs U,V, V,W and
W,U encapsulate three one-parameter families of generalized discrete Lund–Regge surfaces.
Specifically, if we introduce the parametrization

U = a11 + u, V = b11 + v, W = c11 + w (4.35)

with a, b, c ∈ R and u, v,w ∈ su(2) then (4.34)1,3,5 implies that there exists an r ∈ su(2)

such that

u = r1 − r, v = r2 − r, w = r3 − r. (4.36)

In addition, it is evident that a = a(n1), b = b(n2) and c = c(n3). Evaluation of the remaining
conditions (4.34)2,4,6 with r = r ·e then gives rise to the following theorem.

Theorem 3. The three copies

�12r = (r12 − r) × (r2 − r1)

a(n1) − b(n2)

�23r = (r23 − r) × (r3 − r2)

b(n2) − c(n3)

�31r = (r31 − r) × (r1 − r3)

c(n3) − a(n1)

(4.37)

of the generalized discrete Lund–Regge equation are compatible. The Cauchy data

r(n1, 0, 0), r(0, n2, 0), r(0, 0, n3) (4.38)

uniquely determine a ‘Chebyschev lattice’ r, the two-dimensional sublattices of which
constitute generalized discrete Lund–Regge surfaces.

It is remarked that for any given local Cauchy data r, r1, r2, r3 the triad (4.37) determines
the lattice points r12, r23, r31 and, even though there exist three different ways of constructing
the lattice point r123 corresponding to the application of any of the above-generalized discrete
Lund–Regge equations, r123 is well defined. Thus, the above theorem essentially states that
it is consistent to demand that the generalized discrete Lund–Regge equation holds on any
face of the Z3 lattice. This procedure of imposing a two-dimensional lattice equation on the
sublattices of a three-dimensional lattice has come to be known as the ‘consistency approach’



Discrete Chebyshev nets and a universal permutability theorem 4791

and may be used in the detection of integrability in certain classes of difference equations
(cf [20]–[23]). It turns out that, in the current situation, the formal continuum limit respects
consistency.

Corollary 1. The three copies

rxy = 2
rx × ry

a(x) − b(y)

ryz = 2
ry × rz

b(y) − c(z)

rzx = 2
rz × rx

c(z) − a(x)

(4.39)

of the generalized Lund–Regge equation are compatible. In particular, it is consistent to
demand that the coordinate surfaces of a coordinate system in R 3 constitute Lund–Regge
surfaces (corresponding to constants a, b, c).

The above corollary is evidently valid since differentiation of (4.39)1 with respect to z

yields

rxyz = 4
(ry · rz)rx

(a − b)(c − a)
+ 4

(rz · rx)ry

(b − c)(a − b)
+ 4

(rx · ry)rz

(c − a)(b − c)
(4.40)

which is symmetric in x, y, z. Moreover, on application of the scaling

� → ã(n1)b̃(n2)c̃(n3)�

ã1 = (λ + a)ã, b̃2 = (λ + b)b̃, c̃3 = (λ + c)c̃,
(4.41)

the linear triad (4.33) becomes

�1� = �1r

λ + a
�, �2� = �2r

λ + b
�, �3� = �3r

λ + c
� (4.42)

so that

�x = rx

λ + a
�, �y = ry

λ + b
�, �z = rz

λ + c
� (4.43)

in the formal continuum limit. The latter is compatible modulo the su(2) version of the system
(4.31). It may now be directly verified that � obeys the λ-independent triad

�xy = ry

b − a
�x +

rx

a − b
�y

�yz = rz

c − b
�y +

ry

b − c
�z

�zx = rx

a − c
�z +

rz

c − a
�x

(4.44)

and that this system is compatible without reference to the first-order triad (4.43). Thus, the
generalized Lund–Regge system (4.39) represents a particular reduction of the Zakharov–
Manakov system [24] which is obtained by evaluating the compatibility conditions �xyz =
�yzx = �zxy associated with the linear triad (4.44) for a priori arbitrary matrix-valued
coefficients. The Zakharov–Manakov system may be regarded as a three-dimensional
integrable generalization of the ‘principal chiral field equation’ and constitutes a matrix
extension of the classical Darboux system governing conjugate coordinate systems in
R 3 [25].



4792 W K Schief

It turns out that, at the discrete level, � obeys the λ-independent linear triad

�12� = �2r1

b − a
�1� +

�1r2

a − b
�2�

�23� = �3r2

c − b
�2� +

�2r3

b − c
�3�

�31� = �1r3

a − c
�3� +

�3r1

c − a
�1�

(4.45)

which is, once again, compatible modulo the generalized discrete Lund–Regge system (4.37).
Accordingly, the latter constitutes a particular reduction of the discrete Zakharov–Manakov
system set down in [26].

5. A universal permutability theorem

We now demonstrate that generalized discrete Lund–Regge surfaces may also be generated
by means of standard matrix Darboux transformations applied to linear ordinary differential
equations based on the su(2) Lie algebra. In fact, we show that the generalized discrete
Lund–Regge equation regarded as a four-point relation is universal in the sense that it
constitutes the permutability theorem for any (1+1)-dimensional soliton system which admits
an su(2) linear representation amenable to the Darboux matrix method. Such systems include
the nonlinear Schrödinger, Heisenberg spin, sine-Gordon, modified Korteweg-de Vries and
Pohlmeyer–Lund–Regge equations. The latter encapsulate the self-induced transparency (SIT)
and stimulated Raman scattering (SRS) equations and the Maxwell Bloch system (see, e.g.,
[7] and references therein).

5.1. The Darboux matrix method

It is well known [7] that the polynomial structure of any linear ordinary differential equation
of the form

�x = g(λ)�, (5.1)

where g is an su(2)-valued polynomial in a real parameter λ and � ∈ G, is preserved by the
matrix Darboux transformation

D[1] : �(1) = P[1]
(
λ11 − [1]�[1]

−1
[1]

)
�. (5.2)

Here, P[1] constitutes an arbitrary SU(2)-valued function and

[1] = (ψ[1],Mψ̄[1]), �[1] =
(

λ[1] 0
0 λ̄[1]

)
, M =

(
0 −1
1 0

)
, (5.3)

where ψ[1] represents a vector-valued solution of the linear equation (5.1) corresponding to an
arbitrary complex parameter λ[1]. It is noted that the factor (λ11 − [1]�[1]

−1
[1] ) in the above

Darboux matrix linking � and �[1] is identical in structure to that employed in the discrete
matrix Darboux transformation (4.24).

Another Darboux transform �(2) = D[2](�) may be generated from � by means of a
vector-valued eigenfunction ψ[2] corresponding to a parameter λ[2] according to

D[2] : �(2) = P[2]
(
λ11 − [2]�[2]

−1
[2]

)
�. (5.4)

Particular vector-valued solutions of the transformed linear equations

�(1)x = g(1)(λ)�(1), �(2)x = g(2)(λ)�(2) (5.5)
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Φ

Φ(2)

Φ(1)

Φ(12) = Φ(21)

λ[2]

λ[1] λ[2]

λ[1]

Figure 3. A commutative Bianchi diagram.

are then given by ψ[2](1) = D[1](ψ[2]) and ψ[1](2) = D[2](ψ[1]) with associated quantities

[2](1) = P[1]
(
�[2] − [1]�[1]

−1
[1]

)
[2]

[1](2) = P[2]
(
�[1] − [2]�[2]

−1
[2]

)
[1].

(5.6)

The latter give rise to the compound Darboux transforms �(12) = D∗
[2](D[1](�)) and

�(21) = D∗
[1](D[2](�)) defined by

�(12) = P ∗
[2]

(
λ11 − [2](1)�[2]

−1
[2](1)

)
�(1)

�(21) = P ∗
[1]

(
λ11 − [1](2)�[1]

−1
[1](2)

)
�(2),

(5.7)

where the matrices P ∗
[1] and P ∗

[2] in the matrix Darboux transformations D∗
[1] and D∗

[2] do not
necessarily have to coincide with P[1] and P[2], respectively. The ‘permutability theorem’ [7]

D∗
[2] ◦ D[1] = D∗

[1] ◦ D[2] (5.8)

now states that �(12) = �(21) provided that

P ∗
[2]P[1] = P ∗

[1]P[2]. (5.9)

This is encapsulated in the ‘commutative Bianchi diagram’ displayed in figure 3.
As an illustration, we consider the AKNS scattering problem

�x = (g0 + λg1)� = 1

2

(
iλ q

−q̄ −iλ

)
� (5.10)

associated with the nonlinear Schrödinger hierarchy [3]. As indicated above, the matrix
Darboux transformation D[1] leaves invariant its polynomial structure for any matrix P[1].
Moreover, it is well known (see, e.g., [7]) that the choice P[1] = 11 guarantees that the particular
form of the matrices g0 and g1 is preserved. Since any ‘time evolution’ of the eigenfunction
� leading via compatibility to a particular member of the nonlinear Schrödinger hierarchy is
likewise preserved, the matrix Darboux transformationD[1] induces a Bäcklund transformation
for all members of that hierarchy. For instance, the time evolution

�t = 1

2

(
i
(

1
2 |q|2 − λ2

)
iqx − λq

iq̄x + λq̄ −i
(

1
2 |q|2 − λ2

)
)

� (5.11)

is compatible with the scattering problem (5.9) if and only if q is a solution of the nonlinear
Schrödinger equation

iqt + qxx + 1
2 |q|2q = 0 (5.12)

and hence D[1] generates a Bäcklund transform q(1) from q. Furthermore, the admissible
choice P[2] = P ∗

[1] = P ∗
[2] = 11 ensures that the permutability theorem (5.8) is valid. This

implies, in turn, that the permutability theorem is applicable at the level of the solutions of the
nonlinear Schrödinger hierarchy.
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5.2. A universal permutability theorem

In order to analyse further the permutability theorem (5.8), it is convenient to introduce the
matrices

U = −[1]�[1]
−1
[1] , U(2) = −̃[1](2)�[1]̃

−1
[1](2)

V = −[2]�[2]
−1
[2] , V(1) = −̃[2](1)�[2]̃

−1
[2](1)

(5.13)

with the definitions

̃[2](1) = (
�[2] − [1]�[1]

−1
[1]

)
[2]

̃[1](2) = (
�[1] − [2]�[2]

−1
[2]

)
[1].

(5.14)

On use of (5.9), the commutativity property �(12) = �(21) then reads

(λ11 + U(2))(λ11 + V ) = (λ11 + V(1))(λ11 + U) (5.15)

which is independent of the matrices P[i] and P ∗
[i]. Now, on the one hand, explicit evaluation

by means of (5.13) and (5.14) shows that (5.15) is indeed identically satisfied. On the other
hand, since U,V and U(2), V(1) are independent of λ, (5.15) decomposes into the analogue of
the system (4.5), that is

U(2) − U = V(1) − V, U(2)V = V(1)U. (5.16)

If we parametrize the quaternions U,V and U(2), V(1) according to

U = a11 + u, V = b11 + v, U(2) = a11 + u(2), V(1) = b11 + v(1), (5.17)

where u, v, u(2), v(1) ∈ su(2) and

a = −Re(λ[1]), b = −Re(λ[2]), (5.18)

then (5.16) becomes

a(v(1) − v) − b(u(2) − u) = u(2)v − v(1)u, u(2) − u = v(1) − v. (5.19)

The latter of these two equations implies that u, v and u(2), v(1) may be written as

u = r(1) − r, v = r(2) − r, u(2) = r(12) − r(2), v(1) = r(12) − r(1), (5.20)

where r, r(1), r(2) and r(12) are su(2)-valued functions. The remaining equation expressed in
terms of the vectors r, r(1), r(2), r(12) defined by

r = r ·e, r(1) = r(1) · e, r(2) = r(2) ·e, r(12) = r(12) ·e (5.21)

then gives rise to the following key theorem:

Theorem 4. The permutability theorem (5.8) associated with the matrix Darboux
transformation for any linear equation of the kind (5.1) is encapsulated in the four-point
relation of ‘Lund–Regge type’

r(12) − r(1) − r(2) + r = (r(12) − r) × (r(2) − r(1))

a − b
, (5.22)

where

a = −Re(λ[1]), b = −Re(λ[2]) (5.23)

and

(r(1) − r)2 = [Im(λ[1])]
2, (r(2) − r)2 = [Im(λ[2])]

2. (5.24)

In order to illustrate the applicability of the above theorem, we return to the scattering
problem (5.10) of the nonlinear Schrödinger hierarchy. For brevity, we focus on the compatible
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time evolution (5.11) associated with the nonlinear Schrödinger equation. Thus, insertion of
the Darboux transform �(1) as given by (5.2) into the transformed scattering problem (5.5)
leads to the relation

Q(1) = Q − [u, k], Q =
(

0 q

−q̄ 0

)
, u = Im(λ[1])[1]k−1

[1] (5.25)

between the solutions q and q(1) of the nonlinear Schrödinger equation (5.12). In terms of the
ratio

ξ[1] = ψ1
[1]

ψ2
[1]

, ψ[1] =
(

ψ1
[1]

ψ2
[1]

)
, (5.26)

this relation becomes

q(1) = q − 4 Im(λ[1])
ξ[1]

|ξ[1]|2 + 1
. (5.27)

Similarly, the action of the matrix Darboux transformation D[2] on q is given by

q(2) = q − 4 Im(λ[2])
ξ[2]

|ξ[2]|2 + 1
. (5.28)

Furthermore, the structure (5.7) of the compound Darboux transform �(12) = �(21) implies
that the corresponding solution q(12) = q(21) of the nonlinear Schrödinger equation is of the
form

q(12) = G[q, ξ[1], ξ[2], ξ̄(1), ξ̄(2)]. (5.29)

On solving the relations (5.27), (5.28) for ξ[1], ξ[2], we obtain an explicit but rather involved
‘nonlinear superposition principle’ of the form

q(12) = F [q, q(1), q(2), q̄, q̄(1), q̄(2)] (5.30)

which may be used to generate iteratively solutions of the nonlinear Schrödinger hierarchy of
arbitrary complexity (see, e.g., [7]).

It turns out that, remarkably, theorem 4 provides a novel compact variant of the
superposition principle (5.30). This simplification is achieved by making use of the potential
p defined by

px = |q|2, pt = i(qxq̄ − qq̄x) (5.31)

corresponding to the simplest conservation law

[|q|2]t = [i(qxq̄ − qq̄x)]x (5.32)

associated with the nonlinear Schrödinger equation. It is readily verified that, up to an arbitrary
constant of integration, the potential p(1) corresponding to the solution q(1) is given by

p(1) = p − 4 Im(λ[1])
|ξ[1]|2 − 1

|ξ[1]|2 + 1
. (5.33)

If we make the same choice of constant of integration for the Darboux transforms p(2), p(12)

and p(21) then it turns out that the permutability theorem (5.8) extends to the potential p, that
is

p(12) = p(21). (5.34)

In this connection, it is noted that the potential p has been employed in [27] to obtain a nonlinear
superposition principle containing derivatives for the ‘potential nonlinear Schrödinger
equation’.
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‘Inversion’ of the relation (5.25) now yields

u = 1
2 (Q(1) − Q)k + γ k, (5.35)

where the coefficient γ is undetermined. However, since γ constitutes the k-component of u,
decomposition of (5.25)3 reveals that

γ = Im(λ[1])
|ξ[1]|2 − 1

|ξ[1]|2 + 1
. (5.36)

Accordingly, u adopts the form

u = − 1
2 Re(q(1) − q)i + 1

2 Im(q(1) − q)j − 1
4 (p(1) − p)k (5.37)

which is precisely of the type (5.20)1. It is evident that analogous expressions are valid for
v, u(2) and v(1). In the current context, theorem 4 may therefore be formulated in the following
manner:

Theorem 5. Let q be a solution of the nonlinear Schrödinger equation

iqt + qxx + 1
2 |q|2q = 0, (5.38)

p be a corresponding potential defined by

px = |q|2, pt = i(qxq̄ − qq̄x) (5.39)

and r be the vector

r =




− 1
2 Re(q)

1
2 Im(q)

− 1
4p


 . (5.40)

Let the pairs q(1), p(1) and q(2), p(2) be the Darboux transforms of q, p generated by D[1] and
D[2] associated with the Bäcklund parameters λ[1] and λ[2], respectively. If r(1) and r(2) are
defined as in (5.40) and the unique solution r(12) of the linear equation

r(12) − r(1) − r(2) + r = (r(12) − r) × (r(2) − r(1))

Re(λ[2]) − Re(λ[1])
(5.41)

is parametrized according to

r(12) =




− 1
2 Re(q(12))

1
2 Im(q(12))

− 1
4p(12)


 (5.42)

then q(12) constitutes another solution of the nonlinear Schrödinger equation with p(12) being
a corresponding potential. The pair q(12), p(12) is the image of both q(1), p(1) and q(2), p(2)

under the Darboux transformations D∗
[2] and D∗

[1], respectively.

In conclusion, it is observed that the compact permutability theorem [28] associated with
the Darboux transformation for the Calapso equation governing classical isothermic surfaces
likewise originates in the inclusion of two potentials which are, in fact, intimately related to a
potential which appears in Calapso’s original work [29].
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5.3. Generation of generalized discrete Lund–Regge surfaces

At the level of the vector-valued function r(x) employed in theorem 4, the ‘closure’ of the
Bianchi diagram (cf figure 3) guarantees that iterative application of two families of Darboux
transformations D(n1)

[1] and D(n2)
[2] corresponding to two families

λ[1](n1), λ[2](n2) (5.43)

of Bäcklund parameters labelled by n1, n2 ∈ Z produces a two-dimensional ‘lattice’ of vector-
valued functions

r = r(x; n1, n2). (5.44)

For any fixed choice of the continuous variable x, the vectors r(n1, n2) may be regarded as
representing the vertices of a quadrilateral lattice � of Z2 combinatorics. By construction, the
quadrilaterals [r, r(1), r(12), r(2)] of � obey the lattice equation

r(12) − r(1) − r(2) + r = (r(12) − r) × (r(2) − r(1))

a(n1) − b(n2)

a(n1) = −Re[λ[1](n1)], b(n2) = −Re[λ[2](n2)]
(5.45)

in which the subscripts are interpreted in the usual manner as increments of the discrete
variables n1 and n2. Accordingly, the lattice � constitutes a generalized discrete Lund–Regge
surface with the discrete Chebyshev net relations

(r(1) − r)2 = {Im[λ[1](n1)]}2, (r(2) − r)2 = {Im[λ[2](n2)]}2. (5.46)

Thus, in particular, any integrable system with an underlying su(2) linear representation gives
rise to generalized discrete Lund–Regge surfaces via iterative application of a matrix Darboux
transformation which admits a commutative Bianchi diagram.

5.4. An alternative geometric interpretation: the Sym–Tafel formula

We now demonstrate that a four-point relation of generalized Lund–Regge type also arises in
connection with the action of matrix Darboux transformations on curves and surfaces. To this
end, we return to a linear equation of the form (5.1). If we adopt the definition

r = �−1�λ (5.47)

then the trace-free part of the matrix r evaluated at some fixed λ and denoted by

r̃ = r − 1
2 (tr r)1l (5.48)

is an element of su(2). Accordingly, the usual decomposition r̃ = r̃ ·e gives rise to a curve
r̃(x) in R 3. If (5.1) is supplemented by a compatible ‘time evolution’ so that � = �(x, t; λ)

then r̃(x, t) defines a surface in R 3. For instance, the Lax pair (5.10), (5.11) associated
with the nonlinear Schrödinger equation (5.12) gives rise to the su(2) versions of the tangent
vectors

r̃x = 1

2
�−1

(
i 0
0 −i

)
�, r̃t = 1

2
�−1

(
0 −q

q̄ 0

)
� (5.49)

at λ = 0. Further differentiation then reveals that

r̃t = 1
2 [r̃x , r̃xx] (5.50)

and hence we retrieve the well-known fact that the position vector of the surfaces associated
with the nonlinear Schrödinger equation is governed by the potential Heisenberg spin equation

r̃t = r̃x × r̃xx. (5.51)



4798 W K Schief

The above method of relating integrable systems to surfaces has been proposed by Sym [6].
The definition (5.47) has come to be known as the ‘Sym–Tafel formula’ and has been used
extensively in the geometric treatment of both continuous and discrete soliton equations (see,
e.g., [7, 12] and references therein).

As in the preceding, we consider four matrix Darboux transformations D[1],D[2], D∗
[1] and

D∗
[2] which admit the permutability theorem (5.8) and introduce the notation (cf (5.13))

�(1) = P[1]U(λ)� = P[1](λ11 + U)�

�(2) = P[2]V(λ)� = P[2](λ11 + V )�
(5.52)

and

�(21) = P ∗
[1]P[2]U(2)(λ)P −1

[2] �(2) = P ∗
[1]P[2](λ11 + U(2))P

−1
[2] �(2)

�(12) = P ∗
[2]P[1]V(1)(λ)P −1

[1] �(1) = P ∗
[2]P[1](λ11 + V(1))P

−1
[1] �(1)

(5.53)

for the Darboux transforms (5.2), (5.4) and (5.7). It is noted that the identity �(12) = �(21)

translates into

U(2)V = V(1)U . (5.54)

Application of the Sym–Tafel formula (5.47) then yields

r(1) = r + �−1U−1�, r(21) = r(2) + �−1V−1U−1
(2)V�

r(2) = r + �−1V−1�, r(12) = r(1) + �−1U−1V−1
(1)U�,

(5.55)

leading to the identity

(r(12) − r(2))(r(2) − r) = (r(12) − r(1))(r(1) − r) (5.56)

by virtue of the compatibility condition (5.54) and r(12) = r(21).
Decomposition of U,V and U(2), V(1) according to (5.17) now shows that

U−1 = (λ + a)11 − u

|λ − λ[1]|2 , U−1
(2) = (λ + a)11 − u(2)

|λ − λ[1]|2

V−1 = (λ + b)11 − v

|λ − λ[2]|2 , V−1
(1) = (λ + b)11 − v(1)

|λ − λ[2]|2
(5.57)

so that

r(1) − r = λ + a

|λ − λ[1]|2 11 + r̃(1) − r̃

r(2) − r = λ + b

|λ − λ[2]|2 11 + r̃(2) − r̃

r(12) − r(2) = λ + a

|λ − λ[1]|2 11 + r̃(12) − r̃(2)

r(12) − r(1) = λ + b

|λ − λ[2]|2 11 + r̃(12) − r̃(1)

(5.58)

and

(r̃(1) − r̃)2 = (r̃(12) − r̃(2))
2 = [Im(λ[1])]2

|λ − λ[1]|4

(r̃(2) − r̃)2 = (r̃(12) − r̃(1))
2 = [Im(λ[2])]2

|λ − λ[2]|4 .

(5.59)

The latter relations encapsulate two well-known facts [6]. Firstly, the distance between
corresponding points on a curve (or surface) defined by the Sym–Tafel formula and its Darboux
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transform is constant along the curve (or surface). This property is referred to as the ‘constant
length property’. Secondly, any quadrilateral formed by a point r on a curve (or surface) and its
three Darboux transforms r(1), r(2) and r(12) constitutes a skew parallelogram. Accordingly,
iteration of the matrix Darboux transformation as discussed in the preceding generates a
discrete Chebyshev net for any fixed point on the curve (or surface).

It turns out that the discrete Chebyshev nets obtained in the above-mentioned manner are
not arbitrary but are necessarily of generalized discrete Lund–Regge type. Indeed, insertion
of the decompositions (5.58) into the identity (5.56) produces

(ã − b̃)(r̃(12) − r̃(1) − r̃(2) − r̃) = (r̃(12) − r̃(2))(r̃(2) − r̃) − (r̃(12) − r̃(1))(r̃(1) − r̃), (5.60)

where

ã = λ + a

|λ − λ[1]|2 , b̃ = λ + b

|λ − λ[2]|2 . (5.61)

Thus, the following theorem obtains

Theorem 6. The position vector r̃ defined by the Sym–Tafel formula (5.47) and its Darboux
transforms r̃(1), r̃(2) and r̃(12) encoded in an analogous manner in (5.2), (5.4) and (5.7) obey
the nonlinear superposition principle

r̃(12) − r̃(1) − r̃(2) + r̃ = (r̃(12) − r̃) × (r̃(2) − r̃(1))

ã − b̃
, (5.62)

where

ã = λ − Re(λ[1])

|λ − λ[1]|2 , b̃ = λ − Re(λ[2])

|λ − λ[2]|2 . (5.63)

An illustrative consequence of the above theorem is the following nonlinear superposition
principle for the potential Heisenberg spin equation:

Corollary 2. Let � be a solution of the Lax pair (5.10), (5.11) and r̃ be the corresponding
solution of the potential Heisenberg spin equation

r̃t = r̃x × r̃xx (5.64)

defined by the Sym–Tafel formula (5.47)|λ=0. Let r̃(1) and r̃(2) be its Darboux transforms
associated with the Bäcklund parameters λ[1] and λ[2]. Then, the unique solution r̃(12) of the
linear equation

r̃(12) − r̃(1) − r̃(2) + r̃ = (r̃(12) − r̃) × (r̃(2) − r̃(1))

Re(λ[2])/|λ[2]|2 − Re(λ[1])/|λ[1]|2 (5.65)

is another solution of the potential Heisenberg spin equation and constitutes Darboux
transforms of both r̃(1) and r̃(2).

The above analysis implies that (5.55) provides a link between solutions of the two four-
point relations of generalized Lund–Regge type contained in theorems 4 and 6. Accordingly,
iteration of the matrix Darboux transformation gives rise to a connection between solutions of
the two associated discrete generalized Lund–Regge equations and corresponding discrete
surfaces. Indeed, without reference to the genesis of this connection, this fact may be
formulated in the following manner:

Theorem 7. Let r be a solution of the generalized discrete Lund–Regge equation

�12r = (r12 − r) × (r2 − r1)

a(n1) − b(n2)
(5.66)
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and � be an ‘eigenfunction’ obeying the linear pair of difference equations

�1 = [(λ + a)11 + �1r]�, �2 = [(λ + b)11 + �2r]� (5.67)

with r = r · e. Then, the pair

�1r̃ = − �−1�1r�

(λ + a)2 + (�1r)2
, �2r̃ = − �−1�2r�

(λ + b)2 + (�2r)2
(5.68)

is compatible and r̃ defined by r̃ = r̃ · e constitutes another solution of (5.66) with

ã = λ + a

(λ + a)2 + (�1r)2
, b̃ = λ + b

(λ + b)2 + (�2r)2
. (5.69)

The corresponding first integrals are given by

(�1r̃)2 = (�1r)2

[(λ + a)2 + (�1r)2]2 , (�2r̃)2 = (�2r)2

[(λ + b)2 + (�2r)2]2 . (5.70)

It is evident that, in general, the transformation r → r̃ does not preserve a, b and the
first integrals (�1r)2, (�2r)2. This property distinguishes the above transformation from
the matrix Darboux transformation set down in theorem 2. However, if we choose λ = 0
then the constraints

a2 + (�1r)2 = 1, b2 + (�2r)2 = 1 (5.71)

associated with the discrete Lund–Regge equation (3.22) and the discrete O(4) nonlinear
σ -model (3.11) guarantee that the quantities a, b and (�1r)2, (�2r)2 remain the same. This
underlines the privileged nature of the discretization (3.22). In fact, under the assumptions
(5.71) and λ = 0, the pair (5.68) may be brought into the form

�
†
1 = (a11 + �1r̃)�

†, �
†
2 = (b11 + �2r̃)�

†, (5.72)

which shows that r and r̃ represent the position vectors of the pairs of discrete Lund–Regge
surfaces � and �̃ introduced in section 3.3 with N = � and N † = �† being the solutions of
the discrete SU(2) chiral models (3.32) and (3.33), respectively.

On application of the scaling (4.41), the above theorem reduces in the formal continuum
limit to the following:

Theorem 8. Let r be a solution of the generalized Lund–Regge equation

rxy = 2
rx × ry

a(x) − b(y)
(5.73)

and � be an ‘eigenfunction’ obeying the linear pair of difference equations

�x = rx

λ + a
�, �y = ry

λ + b
� (5.74)

with r = r · e. Then, the pair

r̃x = −�−1rx�

(λ + a)2
, r̃y = −�−1ry�

(λ + b)2
(5.75)

is compatible and r̃ defined by r̃ = r̃ · e constitutes another solution of (5.66) with

ã = 1

λ + a
, b̃ = 1

λ + b
. (5.76)

The corresponding first integrals are given by

r̃2
x = r2

x

(λ + a)4
, r̃2

y = r2
y

(λ + b)4
. (5.77)
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Once again, in the case of the Lund–Regge equation (2.25) corresponding to a = −b = 1,
the transformation r → r̃ with λ = 0 represents the link between the two Lund–Regge surfaces
� and �̃ encapsulated in the pair (2.30). The (geometric) nature of the generic transformation
for the generalized (discrete) Lund–Regge equation as formulated in theorems 7 and 8 is
currently under investigation.
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Wiss. Math.-Nat. Kl. S.-B. II 160 39–77

[11] Hirota R 1977 Nonlinear partial difference equations: III. Discrete sine-Gordon equation J. Phys. Soc. Japan
43 2079–86

[12] Bobenko A I and Seiler R (ed) 1999 Discrete Integrable Geometry and Physics (Oxford: Clarendon)
[13] do Carmo M P 1976 Differential Geometry of Curves of Surfaces (Englewood Cliffs, NJ: Prentice-Hall)
[14] Chebyshev P L 1955 On the cutting of our clothes Collected Works vol 5 (Moscow: Fizmatgiz) pp 165–70
[15] Eisenhart L P 1960 A Treatise on the Differential Geometry of Curves and Surfaces (New York: Dover)
[16] Nappi C R 1980 Some properties of an analog of the chiral model Phys. Rev. D 21 418–20
[17] Burtsev S P, Zakharov V E and Mikhailov A V 1987 Inverse scattering method with variable spectral parameter

Teoret. Mat. Fiz. 70 323–41
[18] Kramer D 1982 Equivalence of various pseudopotential approaches for Einstein–Maxwell fields J. Phys. A:

Math. Gen. 15 2201–7
[19] Hoffmann T 2000 On the equivalence of the discrete nonlinear Schrödinger equation and the discrete isotropic

Heisenberg magnet Phys. Lett. A 265 62–7
[20] Nijhoff F W and Walker A J 2001 The discrete and continuous Painlevé hierarchy and the Garnier system
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